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Abstract 

 
        A significantly large number of storm simulations are required in the current stochastic 
based modeling framework adopted by the US Army Corps of Engineers (USACE) to examine 
flood risk reduction measures for Southeast Louisiana. Because of the large number of numerical 
model runs and the detailed nature of the modeling, the adopted modeling framework requires 
significant amounts of computer and human resources. This paper presents an ANNs method that 
can adequately characterize the storm surge response, and provide a means for reliably 
estimating surge responses for storms not simulated with the ADvanced two-dimensional 
CIRCulation model (ADCIRC).   
       The ANNs methodology includes identifying correlations between input parameters and 
model output responses, quantifying the input-output relationships using supervised ANNs, 
development of storm parameter clustering and splitting processes (CSP) using unsupervised 
ANNs, checking the reliability of CSP using supervised ANNs, and comparing surge-return 
period estimates obtained using a reduced storm set versus those made using a larger storm set 
from the ongoing Louisiana Coast Protection and Restoration (LACPR) and Morganza to the 
Gulf projects are presented. 
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1. Introduction 
 
      Numerical simulation is the most accurate and 
efficient modern technique to calculate the surge 
response during a storm/hurricane event. Recently, a 
very successful interagency team effort has been 
made to model the storm surge response for hurricane 
events along the northern coast of the Gulf of Mexico. 
The dependencies between surge and waves are 
treated through coupled models, and a probabilistic 
approach has been adopted for calculating inundation 
levels and their associated probabilities. However, 
numerous model runs are required to cover a wide 
range of possible hurricane scenarios to meet the 
management and project design needs. This newly 
established modeling framework requires a 
significant amount of resources including personnel 
and computer resources, as well as contract labor and 
other factors which raise project costs and completion 
time requirements.  Good planning with an 
alternative technology path that can reduce costs for 
projects is highly desirable. Simulation using ANN 
techniques was examined as a possible tool for 

reducing the resources required to make storm surge 
estimates for design purposes. Often in design, a 
large set of storm surge simulations must be made for 
each of a series of different project alternatives (such 
as different levee alignments).  Increasing numbers of 
alternatives dramatically escalate the computational 
requirements for a detailed modeling approach. 
 
2. Brief Overview of solution Techniques 
and Computational Procedures 
 
     To save time and cost for achieving project goals 
for this complex coastal system where numerous and 
very different risk reduction measures are being 
considered, an approach is examined with the 
purposes of eliminating some unnecessary runs but at 
the same time maintain the required high standard of 
results that are achieved with the detailed modeling 
approach applied for a large number of hurricane 
events.  This approach employs Artificial Neural 
Networks (ANNs) (NeuroSolutions, 2003) and is 
described below. 
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Supervised ANNs (SANNs) 
      The most popular static algorithm employed in 
SANNs for training is a Multi-layer Feed Forward 
Neural Network (MLP); Time-Delayed Recurrent 
Neural Networks are most use for dynamic situations. 
In this study, the MLP is the most suitable algorithm 
to address the relationship between input parameters 
(storm characteristics) for each ADCIRC run and 
storm surge response (peak surge values) for each 
computational grid point of interest. So, a short 
description of MLP is provided here.  The detailed 
theoretical development for the algorithms can be 
found in Principe, et al (2000), and Haykin (1994). 
      They are numerous works on the study and 
applications of MPL. The different variants of this 
model differ in the way the weights are updated 
during learning. The back-propagation training 
algorithm, which fully incorporates the MLP 
architecture, is currently the most general-purpose, 
commonly used neural-network paradigm. The basis 
principle of the back-propagation algorithm is to 
introduce a method of modifying the network weights 
by minimizing the error between a target and 
computed objects. The main advantage of MLP is 
that they are easy to use, straightforward in 
conceptual design, and that they can approximate any 
input/output map. However, key disadvantages are 
that they train slowly, require a large amount of 
training data, and classify by using static 
backpropagation training. Actually, the MLP model 
does not perform temporal processing since the 
vector space input encoding gives the model no hint 
of the temporal relationship of the inputs 
 
Unsupervised ANNs (USANNs) 
      Unsupervised training means the networks learn 
from their own classification of the training data, 
without external help. It is assumed that class 
membership is broadly defined by the input patterns 
that share common features, and that the network will 
be able to identify those common features across the 
range of input patterns.  Self-organizing Feature 
Maps (SOFM) is special kind of neural network that 
can be used for clustering tasks.  Only one map node 
(winner) at a time is activated, corresponding to each 
input. The location of the responses in the array tends 
to become ordered in the learning process as if some 
meaningful nonlinear coordinate system for the 
different input features were being created over the 
network. This illustrates an important and attractive 
feature of SOFM applications, in that a multi-
dimensional input ensemble is mapped into (one or) 
two-dimensional space, preserving the topological 
structure as much as possible. Hsieh and Jourdan 
(2005) investigated the similarity of watershed s and 

hydrologic responses using supervised-unsupervised 
ANNs. They incorporated GIS into USANNs to 
quantify the similarity of watershed characteristics. 
The goal of this approach was to find the best match 
between the watershed of interest and those contained 
in a large knowledge base of over one thousand 
watersheds and to determine the reliability of using 
“transplant” watershed information during the 
clustering and classification stages.  
 
Computational procedures and input/output 
parameters 
      A computational procedure to perform this effort 
is shown in Figure 1. The first step is to identify the 
significant storm parameters and use the resulting 
surge responses to build the ANNs model. The 
performance of this ANNs model is critical to assure 
the right input parameters are selected. The second 
step of the approach is clustering analysis, using 
SOFM to separate the similar storm patterns from the 
knowledge base (input parameters only), and to form 
a number of subgroups. The third step is to split each 
subgroup into two components: training and testing 
storm sets. The ensemble training component from 
all subgroups along with corresponding surges is the 
knowledge base which is assumed to represent the 
required ADCIRC runs, while the ensemble testing 
component from all subgroups along with 
corresponding surges are considered to be the  
unnecessary ADCIRC runs. More ADCIRC runs in 
the final ensemble testing group means a higher 
percentage of runs saving that can be obtained under 
the good performance of testing group from ANNs 
modeling. Although there is no particular rule to 
follow how to separate the training and testing group, 
but at least two numerical model runs from each 
subgroup need to selected to be the training group if 
this subgroup contains more than  or equal to two 
numerical model runs. For a large number of 
numerical model runs, the decision is based on either 
second level of clustering or the variation for the 
most sensitive storm parameters.   
      They are 5 storm input parameters (CpLand 
(central pressure at landfall), VelAvg (forward 
translational speed of the storm center, which was 
assumed to be constant along the specified track), Rm 
(radius to the maximum winds), MaxWind 
(maximum wind speed at landfall), Distance 
(distance from the storm center at landfall to the 
location of interest), and Angle (angle between the 
storm center at landfall and the location of interest).  
The corresponding surge produced by the storm at 
the location of interest is the output. Since CpLand 
and Distance are negatively correlated to the surge 
response, a negative sign for both inputs is taken. The 
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Angle for each storm is further decomposed into 
cosine (Angle-x) and sine (Angle-y) components. 
The first 4 input parameters are considered as global 
storm parameters while the remaining input 
parameters (Distance, Angle-x, and Angle-y) are 
treated as local, or positional, parameters. 
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Figure 1. Computational procedure to determine necessary 
surge model scenario run. 
 
 
3. Demonstration Example 1 – LACPR 
Project 
 
      This demonstration shows results for a 
computational point (141, circled in Figure 2) from 
among many considered in the LACPR study (Figure 
2) to illustrate the ANN application concept. Usually, 
a correlation coefficient analysis is conducted 
between all the inputs and corresponding output in 
order to check the sensitivity of the system. Figure 3 
shows the most significant input parameter – angle 
for point 141.  Figure 4 illustrates the results of 
ANNs modeling for point 141. MLP is the training 
algorithm and total iterations are 5000. With high 
statistical significance (high correlation coefficient 
and low mean absolute error, for example), the ANNs 
modeling proves to be a satisfactory tool to quantify 
the relationship between inputs and output. The blue 
lines shows the computed peak surge using the 
ADCIRC model for all storms while the red line 
shows the computed peak surge values using ANNs 
modeling.  
 
 

 

 
 
Figure 2.  Surge response points from LACPR ADCIRC 
model near New Orleans area. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 3.   X and Y components for approach angle from 
point 141 (x-axis represents storm numbers and y-axis 
represents sine/cosine of the angle, between 1 and -1). 
 
      A 5x5 SOFM clustering analysis was then applied 
to group the dimensional 152x7 information (7 input 
parameter factors for each of 152 storms). The choice 
of the size for SOFM process is based on how detail 
you would like to deal with the clustering from the 
system. While large matrix may break 152 storms 
into too many pieces, small matrix may require the 
second level of clustering. The ratio of total storm 
numbers to total subgroup numbers estimates the 
proper matrix size is 5x5 or 4x4. The final destination 
for each represented storm after iteration process for 
position adjustment is called “Get Winner”. An 
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optimal pattern distribution matrix for these 152 
storms all reach “WINNER” is shown in Figure 5.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 4.  Comparison of results from ANNs- MLP training 
for point 141 and calculated surges from ADCIRC 
simulations of 152 storms based on 7 storm input 
parameters (pink represents ANNs simulation and blue 
shows ADCIRC results; x-axis represents storm number 
and y-axis represents surge response (ft)). 
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Figure 5. A 5x5 SOFM clustering analysis and its training 
and testing components fro152 LACPR ADCIRC runs 
based on 7 storm parameters (point 141). 
 
      The number for each grid cell of the matrix shows 
that similar patterns are found from 7 input 
parameters. It is noted that the “0” value for a 
particular grid cell in the matrix indicates that there is 
no storm falls that specific pattern. It usually happens 
when too large size of matrix is assigned or too little 
variation of pattern does exist. The splitting process 
is then applied to separate the storms within a grid 
cell into a training component and a testing 
component after an ensemble process is conducted by 
collecting the minimum required storm events into 
the training group and putting the remaining events 

into the testing group. . Since the Angle-y was found 
to be the most significant parameter, it was used as a 
criterion, including extreme values and part of 
represented values from this parameter, to determine 
into which component each storm should go. The 
lower part of Figure 5 presents the final assignment 
of storms into the training and testing components. 
The ANNs training, using 85 selected storms with 
surge as output was applied to examine performance 
for the testing component. Figure 6 illustrates 
performance of the testing component, the 67 
selected storms (a correlation coefficient 0.912 was 
achieved). From this analysis, it is possible to avoid 
44 percent (67 out of 152) of ADCIRC simulations, if 
the storm simulations have to be repeated.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 6. Performance of testing components of 152 storms 
for point 141 (pink represents ANNs simulation and blue 
shows ADCIRC results; x-axis represents storm numbers 
for testing component and y-axis represents surge response 
(ft)) 
 
      Results also suggest that it might be possible to 
intelligently reduce the number of storms considered 
in simulations to look at various alternatives.  Figure 
7 summarizes the surge responses from ADCIRC 
runs, ANNs simulation, and the combination of 
ADCIRC runs (training component) and ANNs 
simulation (testing – prediction component). Closer 
results are found between ADCIRC runs and the 
combination approach. Highly correlated 
relationships between top (numerical simulation) and 
bottom (the combined approach) figures demonstrate 
the accuracy of the approach.  To compare the surge 
frequencies computed based upon these three series, 
the response surges for return periods up to 2000 
years are computed. The maximum deviation is about 
0.18 m (0.6 ft) between original ADCIRC runs and 
this combination approach for point 141 (Figure 8). 
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Figure 7. Surge (ft) comparison among ADCIRC 
simulation, ANNs simulation, and ADCIRC-ANNs 
combination from 152 storm model runs for point 141 (x-
axis represents storm numbers and y-axis represents surge 
response (ft)). 
 
4. Demonstration Example 2 – Morganza 
Project 
 
      A second example is from the Louisiana 
Morganza to the Gulf of Mexico hurricane protection 
project (Figure 9). The main purposes are to reduce 
hurricane and flood damages in an environmentally 
sustainable manner in the Houma area. It will protect 
over 150,000 people and 130 square miles of saline 
and fresh marshes, farmlands, heavy and light 
industry, residential, and other developed areas.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 8. Deviation (in feet) of ANNs-minus-ADCIRC and 
combination-minus-ADCIRC (x-axis is the number of 50-
yr increments in return period) for surge responses (point 
141). 
 
Protect development and the remaining fragile 
hurricane storm surge. The engineering related project 
features include lock complex, levees, environmental 
water control, and floodgates at road and waterways. 
A computational point (point 200; yellow circle –
Figure 9) in front of levee is selected to demonstrate 
the ANNs modeling reliability based on the same 
type of input/output parameters as in the previous 
example. Although the clustering, splitting, and 
testing processes are the same as the previous 
example, instead of presenting a lattice box, the 
variation for two selected input parameters during the 
processes is provided. Figure 10 demonstrates how 
the input parameter Angle-x varies through clustering 
and the splitting processes for 359 storms. It is noted 
that the ordering shown for both is ascending from 
lower cluster to higher cluster. If the similar patterns 
are approximately equally distributed into training 
and testing components, the final patterns for the 
first-half and the second-self (left and right from 
green line) should be very close. 
       Results from this clustering and splitting process 
analysis suggest that the percentage of model 
simulations which can be reduced is about 50.4 
percent (181 runs out of 359 runs). The final ANNs 
training results show a correlation coefficient of 
0.961 and a testing correlation coefficient of 
0.931(shown in Figure 10).  These are better results 
than in the previous example. The reason could be 
more training patterns are involved (178 patterns 
versus 75 patterns), or that the location of the 
Morganza project is an area in which the storm surge 
regime is less complex and less sensitive to 
individual storm parameters that in the previous 
example where we know from modeling-informed 
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experience that storm surge can vary considerably 
east and west of the Mississippi River depending 
upon the specific characteristics of an approaching 
hurricane.  

 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 9. After clustering and splitting (bottom) processes 
of angle-x input from 359 storm model runs for point 200 
(x-axis represents storm numbers and y-axis represents 
cosine function response of the storm approach angle 
(between 1 and -1)). 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 10. Performance of testing component of 359 storms 
for point 200 (pink represents ANNs simulation and blue 
shows ADCIRC results; x-axis represents the testing 
component of storm number and x-axis represents surge 
response (ft). 
 
5. Conclusions 

 
      This paper uses unsupervised ANNs to cluster storm 
patterns. This is based on four global storm parameters and 
three locals, or positional parameters. The angle between 
the location of interest and the location of storm landfall 
was found to be the most sensitive input parameter, due in 
large part to the influence of the Mississippi River delta and 
levee system in dictating local surge conditions in 
southeastern Louisiana. The splitting process is able to 
separate all storm patterns into training and testing 
components. The number of storms in the testing 
component equals the number of numerical runs that can be 
potentially be reduced by simulating surge through the 
ANNs model using the training components along with 
their corresponding surge from actual numerical 
simulations of storm surge using the ADCIRC model. Two 
demonstration projects (LACPR and Morganza), results for 
a single point in each case, show successful application of 
the developed computational procedures. While point 141 
from LACPR project demonstrates reducing model runs 
about 40 percent of storm model runs, point 200 from the 
Morganza project demonstrates reduction about 50 percent 
of ADCIRC model runs. Results showed that the more 
storm patterns that are involved in the training component, 
the higher percentage in the reduction of numerical runs, 
which makes intuitive sense. 
      The second phase of work is to extend the analysis from 
single-point to multiple-point basis.  It includes the analysis 
of statistical parameters of surge responses as well as 
geometry parameters in the analysis which will facilitate 
improved selection/omission of storms for simulations 
needed to evaluate multiple alternatives that might or might 
not involve changes which can directly influence the storm 
surge itself.  A third area of further study is development of 
guidance to define an optimal storm number selection from 
the multiple point environments to report to the scientific 
community. 
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